

Intermediate Tracker R&D and Prototyping

Rachid Nouicer For the Intermediate Silicon Tracker Group

- 1. Groups, Production Capability and Assembly Facilities
- 2. Concepts of Int. Si. Module, Ladder and Barrel
- 3. S1 Silicon Module Prototype: two HDIs+FPHX Chips+Sensor
 - S1 is the first concept attempted and it is consider an excellent R&D for S0
 - Status, Assembly and Concerns: What Have We Learned?
- 4. S0 Silicon Module Prototype for INTT: One HDI+Chips+sensor
 - Status and Plan
- 5. Conclusion and Outlook.

Intermediate Tracker (INTT) R&D Program

The Intermediate Tracker is heavily based on the PHENIX FVTX technology:

	FVTX	Intermediate Silicon Tracker
Sensor	Strip sensor (320 um) - Trapezoid shape	Strip sensor (320 um) - Rectangular shape
Chip	FPHX	FPHX (6K chips left over from FVTX)
HDI High-Density Interconnect	Trapezoid shape (power, bias voltage, slow control)	Rectangular shape - concept based on FVTX HDI
Extender Bus	Connect HDI to ROC	FVTX HDI but longer
ROC board	- based on the rad-tolerantACTEL ProAsic3E FPGAs- Trapezoid shape	Re-use FVTX ROC

Intermediate Tracker uses very conservative technology (low risk)

Groups Working on The Intermediate Tracker

- S. Hasegawa
 - H. Sako

- M. Brooks

- M. Liu

Brookhaven National Laboratory

- J. Huang,
- M. Lenz,
- E. Mannel,
- R. Nouicer,
- R. Pisani

Inner Silicon Tracker well surrounded by experts

- T. Hachiya,
- G. Mitsuka,
- Y. Yamaguchi

Rikkyo

- H. Masuda

GRIK≣N

RIKEN

- Y. Akiba,
- I. Nakagawa

Nara Woman's University

- M. Shimomura

Names:

Black: participant

Blue: consultant

Green: support

Production Capability and Assembly Facilities

Electronics Support Lab.

Machine Shop

Main Silicon Lab

Production Capability and Assembly Facilities

XY Stage Inspection scope

Automatic Sensor Probe Station

OGP Smart Scope alignment system

Production Capability and Assembly Facilities

OGP Smart Scope alignment system

Modules alignment

Capability at FNAL (VTX, FVTX activities at FNAL)

CMM Machine

Wire-bonding Machine

Encapsulation Machine

Full Support from FNAL for the R&D of the Intermediate Silicon Tracker

Manpower Expertise and Availability

Technical Support at BNL

Manpower Expertise and Availability

UNM

FVTX benches' test can be used immediately to test Si Strip modules (use FPHX). They can be used to test prototype of intermediate Tracker module/ladder.

LANL

BNL

Manpower Expertise and Availability

Tremendous expertise from Si det. (VTX, FVTX) construction:

→ excellent start to boost Si Strip construction successfully

Intermediate Silicon Tracker for sPHENIX

	R [cm]	# of Ladders
MAPS	2.3	
	3.1	
	3.9	
INTT	6	18
	8	24
	10	30
	12	36
TPC	30 ~ 80	

Total Number of Ladders=108

One ladder = two HDIs + two sensors + chips = Two half ladders

HDI

Si-Sensor

Si-Sensor

HDI

S1 Silicon Module Prototype: HDI/Chips/Sensor

- Status, Assembly and Concerns: What have we learned?

S1 Silicon Module Prototype: HDI/Chips/Sensor

- Status, Assembly and Concerns: What have we learned?

S1 prototype module is good R&D forS0 prototype silicon module

 Electrically the same as the small Wedge HDI of FVTX. This allows read-out via FVTX ROC+FEM

Radiation length: 0.28% (physical thickness 0.45mm)

S1 Silicon Module Prototype: HDI/Chips/Sensor

- Status, Assembly and Concerns: What have we learned?
 - S1 prototype #1 (checking mechanical assembly): bad sensor + bad chips + bad HDI (but all reals)

Silicon Module Prototype S1: HDI/Chips/Sensor

- Status, Assembly and Concerns: What have we learned?
 - S1 prototype #1 (checking mechanical assembly):
 bad sensor + bad chips + bad HDI (but all reals)

Wire-bondig of the FPHX chip was done at Inst. Div. BNL

- What have we learned?
 - Distance between sensor and FPHX chip is too big (2.5 mm!). It should be reduced to 1 mm.
 - FPHX chip to HDI: move back HDI mask by 450 um
 - Analog ground too small for wire bonding, surface should be increased by a factor 4
 - Glue on some bonding pads on the HDI (bad for wire bonding).
 - We need cross/marker in each corner of the sensor (for alignment

All these inputs were sent to the companies before the production of the new HDI and S0 sensor.

Silicon Module Prototype S1: HDI/Chips/Sensor

- Status, Assembly and Concerns: What have we learned?

- S1 prototype #2 (looking for signal from sensor/chip/HDI):

Good Sensor + Good FPHX Chips + Good HDIs

Assembled at BNL

Silicon Module Prototype S1: HDI/Chips/Sensor

- Status, Assembly and Concerns: What have we learned?

S1 prototype #2 (looking for signal from sensor/chip/HDI):

Good Sensor + Good FPHX Chips + Good HDIs

Testing bench at BNL Student: Masuda Hidekazu

Goals:

- 1- Check if HDIs and 10 FPHX chips work properly: looking for good signals
- 2- if (1) is successful, we will mount good sensor/wired and test again.
- 3- If we get good signal from S1 silicon module prototype: this will be a very good progress toward S0 module prototype.
- 4- INTT design is a "minimum model" and so we can extend the INTT ladder length with limited risk.

Schematic of S0

All we have learned from S1 prototype module have been feedback to the companies before production of prototype HDI and sensor for S0 silicon module

Schematic of S0

S0 Sensor Prototype will Move to Production Soon

Conclusion and Outlook

- Intermediate Tracker has a conservative design. It is based on existing FVTX technology (low risk and low cost).
- Mechanical assembly of S1 prototype silicon module was very successful: Stave + HDI + FPHX Chips + S1 sensor
- Issues and concerns learned from S1 prototype module were sent to the companies Yamashita (HDI) and HPK (sensor)
- S1 silicon module prototype testing is in progress.
- HDI design and silicon sensor design for S0 silicon module prototype are in good progress and under control. Excellent communication with private companies (HPK and Yamashita).
- We have facilities, equipment, and expertise to successfully carry out the Intermediate Tracker project.